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Bounded rationality leads to equilibrium of public goods games
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In this work, we introduce a degree of rationality to the public goods games in which players can determine
whether or not to participate, and with it a new mechanism has been established. Existence of the bounded
rationality would lead to a new equilibrium which differs from the Nash equilibrium and qualitatively explains
the fundamental role of loners’ payoff for maintaining cooperation. Meanwhile, it is shown how the potential
strategy influences the players’ decision. Finally, we explicitly demonstrate a rock-scissors-paper dynamics

which is a consequence of this model.
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I. INTRODUCTION

The public goods games (PGGs) can be regarded as a
very useful tool to qualitatively investigate interactions
among human beings [1-4]. For biologists, ecologists,
economists, and social scientists it has been a long history of
employing the PGG as a model to study how to maintain
cooperation in a group of anonymous individuals [5-9]. Tt
can be traced back to the tragedy of the commons [10,11]. In
that model, each individual confronts a temptation of making
null contributions, but exploiting other cooperators.

In a typical PGG, N players are randomly selected from a
large population. In the game, there are three different be-
havioral types of players: (a) the cooperators C who are
ready to participate in the PGG and willing to contribute a
fixed amount of money c¢ to the common pool, (b) the defec-
tors D who participate but refuse to pay and attempt to ex-
ploit the resource of the common pool, and (c) the loners L
who are unwilling to participate in the PGG, but gain a fixed
payoff Kc which is a small amount of money. A practical
co-existence of these strategies leads to a rock-scissors-paper
dynamics with a cyclic dominance [12].

Recently, the PGG has been respectively studied from the-
oretical and experimental aspects [2,12-16]. One of the
available theories is the replicator dynamics which predicts
the frequency distributions of the three strategies and corre-
sponding payoffs at next step by the information of the
present state [2,17]. But there is an obvious flaw in this
theory, which when the frequency of any of the three strate-
gies is zero, the dynamics fails to function forever. To verify
the replicator dynamics, some experiments were conducted
in 2003 [15]. The experiments demonstrate that qualitatively
a rock-scissors-paper dynamics prevails; however, the quan-
titative results (including frequencies and average payoffs of
the three strategies) are different from the predictions of Ref.
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[2]. It means that the model given in Ref. [2] does not fully
suit to the situation under discussion.

In this work, we introduce the degree of rationality € with
which a new mechanism is established to achieve equilib-
rium. In fact, this mechanism is a refinement to the original
(noncooperative) game theory [1,18], (see details in Ref.
[19]). By this means, one can change the next-step strategy
according to the gained information and eventually reach the
final equilibrium. Our results are basically the same as that
given in Ref. [15], but in our scheme the disappeared strat-
egy may be revived.

II. MODEL AND DYNAMICS

In this model, we consider a simple case that N players
are randomly selected from a large population. The players
who voluntarily participate in the PGG consist of coopera-
tors C, defectors D, and loners L. n., ny and n; (with
ne+ng+n;=N) are the numbers of players who choose to be
C, D, and L, respectively, and the net payoffs of the coop-
erators, defectors, and loners are P., P, and P; whose ex-
plicit expressions are given below,

ren

P.= ——c, (1)
n.+ny
ren,
P,= , (2)
nc+nd
P1=KC, (3)

where r denotes the interest rate of the common pool. In
particular, if only one player participates in the PGG (i.e.,
n.+ny;=1), he should be accounted as a loner. Obviously,
when K=0, the loner will not obtain any positive payoff
(namely, he cannot do any better than a defector); when
r=1+K, no matter what a cooperator does, he cannot make
more money than a loner; whereas when »=N, no matter
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what a defector does, he cannot prevail a cooperator. There-
fore for the PGG in which players voluntarily participate,
there is a constraint,

1<1+K<r<N. (4)

The above expression indicates that there is not a dominating
pure strategy in voluntary PGG, and this also leads to the
rock-scissors-paper cycling dynamics of the three various
strategies in the system. If there are too many cooperators,
defectors may gain higher payoffs and the consequence
would be a growth of the number of defectors; whereas if the
number of defectors is too large, the payoffs of cooperators
would become very low, and this would increase the number
of loners; if the number of loners is too large, they would
gain more payoffs in a group consisting of not many partici-
pants, so more players would choose to be cooperators. That
is to say, as the constraint (4) is satisfied, three strategies can
coexist.

We let x., x;, and x; denote the frequencies of cooperators,
defectors, and loners, respectively (with the normalization
condition x,+x,+x;=1), then their average payoff values are
[2,14]

1-x)
szl('cxﬁv_1 +rc e (l - ! ), (5)
1—x1 N(l—xl)
1—x
P.=P,—c—c(r- l)va_l +CL L (6)

Nl—xl.

According to Nash’s noncooperative game theory [18], the
Nash equilibrium (NE) condition of this game should be

PCZPd:Pl:KC. (7)

As we take the parameters provided by Ref. [15]: N=6, r
=3.6, ¢=1.25, and K=1, the NE should be (x;,x,,x,)
=(0.4240,0.2215,0.3545). In fact, it is also the fixed point in
Ref. [2]. However, the NE is significantly different from the
results of experiments that were carried out in 2003 [15].
This explicitly indicates that in realistic life, human beings
are not perfectly rational. Besides, by Egs. (5) and (6) one
notices that when r=2, cooperators by no means obtain a
higher payoff than defectors; therefore as long as the players
are perfectly rational, only the interest rate satisfies the con-
dition Max(1+K,2)<r<N, and all the three strategies can
coexist.

In this work, we introduce a degree of rationality repre-
senting the maximal difference of the payoffs between vari-
ous strategies that the players in voluntary PGG can accept.
We postulate that the payoff difference players can accept is
proportional to the following: (i) the difference between the
maximal payoff for cooperators and that for loners; (ii) the
maximal increase of payoff a cooperator receives when he or
she switches from cooperation to defection. For simplicity
and without loss of generality, we set the proportional coef-
ficient equal to one; thus the degree of rationality (i.e., the
maximal difference of payoffs players can accept) can be
written as
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FIG. 1. (Color online) The dynamics of Eq. (9) for N=5, r=3,
and K=c=1. The lines start in various points but all end up at the
same fixed point Q. The arrows indicate their directions of
evolution.

c(r=1-K)(N-r)
€= ,
N

(8)

and the evolution of the frequency x; of the i strategy is set as
[18,19]

. ci(x)
i= — X 9
X 2 o) X )
J
where
¢,(x) = max[0, P;(x) — max;(P;(x)) + €], (10)

with x=(x;,x,.,x;) denoting the strategy profile. It is noted
that because both P;(x) and e contain a factor ¢; thus Eq. (9)
is unrelated to the consumption of the cooperator c.

Let x=0, i.e., the relative frequencies of all the strategies
of the players are unchanged, by Eq. (9), one can obtain

(11)

where x denotes an equilibrium of the strategies with the
bounded rationality. Obviously, the equilibrium of the system
is also unrelated to c, thus for simplification we can set ¢ to
be unity without losing generality.

III. RESULTS AND DISCUSSION

Now, let us start analyzing the dynamical behaviors of the
system in our model. Figure 1 shows that our dynamical
equation would drive the system to finish at a fixed point Q;
meanwhile it is also shown: (i) if the loners are prevalent, the
number of cooperators would increase, (ii) if most of the
players have chosen to cooperate, more players then would
turn to defect, and (iii) if most of the players are defectors,
then the best choice for the majority of players would be
leaving the game to be loners. Although previous theories
provided a rock-scissors-paper cycle [14], such a trend is
obviously observed in our model. This result is consistent
with experimental result [15].

In order to qualitatively analyze the differences of equi-
librium for players with bounded rationality and that for the
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FIG. 2. (Color) Average frequencies of cooperators C (blue line), defectors D (red line), and loners L (green line) as a function of r for
parameters N=5 and (a) K=0.1, (b) K=0.5, (¢c) K=1.0, (d) K=1.25, (¢) K=1.5, and (f) K=2.0. The NE is shown as blue dashed line (c), red
dashed line (d), and green dashed line (1). The black arrows indicate where strategies burst or vanish in one model and the red arrows indicate

where strategies burst or vanish in Nash’s theory.

perfectly rational ones (NE), it would be helpful to study the
information gained from Fig. 2. For convenience of discus-
sion, we define x; and £;(i=c,d,l) as the frequencies of the i
strategy in our model and Nash’s theory, respectively.

By the Nash’s theory, all players are perfectly rational, so
it implies that all the three strategies coexist in the range of
Max(1+K,2)<r<N and within the coexistence range the
frequency of loners is unrelated to their payoffs. However, as
the rationality degree of the players is bounded (i.e., bounded
rationality), the coexistence range of the three strategies
would obviously shift and the frequency of loners would be
affected by both r and K.

Figure 2 exhibits that as the payoff of loners increases (K
becomes larger), the players with bounded rationality more
likely choose to be loners than those with perfect rationality.
It means that with increase in the payoff of the loners, x;
would gradually increase from smaller than X, to be greater
than X;. In order to qualitatively describe the effect of K on
the equilibrium, we have calculated the dependence of the
extinction points of cooperators and loners (rq,r;) on K as
we only change income of loners but keeping N unchanged,
in the bounded rationality model (see Fig. 3). Obviously, the
loners would vanish earlier and earlier as K diminishes.

Figures 2(c)-2(e) exhibit that x; gradually decreases from
greater than X; to smaller as the interest rate r increases. This
indicates that players with bounded rationality more favor
taking a risk when the payoff of the cooperators increases
(i.e., r is getting larger) than those with perfect rationality. It
implies that the loners with bounded rationality would be
eliminated much earlier than those with perfect rationality.
For example, as N=5, r=3, and K=c=1, the loners with
bounded rationality would vanish at r;=4.4 (the extinction
point is consistent with the results of Refs. [14,12]). In
Nash’s theory, instead, in any case loners would vanish at r
=N. Here, r, refers to the extinction point of the « strategy
in the bounded rationality model.

By Egs. (1) and (2), it is easy to obtain that when a par-
ticipant switches from cooperation to defection, the enhance-

ment of his payoff would be ¢—rc/(n.+n,) [2]. Tt implies
that as r increases, because the gain of payoff which a coop-
erator receives as he turns into a defector decreases, the
temptation of choosing defection decreases accordingly. As r
is sufficiently large, the participants with bounded rationality
would more likely choose cooperation than those with per-
fect rationality (x,.>X%,).

From Fig. 2, one can obtain some additional pieces of
information: (1) as r—1-K is sufficiently large, the coopera-
tors can survive, and even though as r<<2 they still do. (2) as
r>r;, x; decreases and x,. increases as r increases; this con-
sequence is consistent with the results of Refs. [12,14]. Be-
sides, even though in the case of r>r;, loners disappear, the
payoff of loners still seriously affects the choice of the par-
ticipants; (3) under the condition of bounded rationality, the
range for defectors’ survival is 1+ K <<r<N. As both r and K
are sufficiently small, all cooperators are extinguished, but
defectors still survive. This indicates that the cooperators
who possibly survive (if everybody selects cooperation, be-
ing a cooperator may still be a possibility to gain positive
payoffs greater than the loners’ payoff) can exert important
influence on the selection trend of participants; even though

5

e

FIG. 3. The values of r¢ (solid line) and r; (dashed line), where
cooperators burst and loners vanish, respectively, as a function of K
with N=5.
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FIG. 4. (Color) Average frequencies of cooperators C (blue
line), defectors D (red line), and loners L (green line) as a function
of r for parameters N=6, K=1, and ¢=1.25. The NE is shown as
blue dashed line (c), red dashed line (d), and green dashed line (1).
The black arrows indicate where strategies burst or vanish in one
model and the red arrows indicate where strategies burst or vanish
in Nash’s theory.

in practice, cooperators are already extinguished. Here, we
define a strategy which has already disappeared, but still pos-
sesses a possibility to bring up more payoffs than the other
strategies as a potential strategy, and this potential strategy
would seriously affect the equilibrium of the system.

Finally, let us analyze the average payoffs of various strat-
egies in the bounded rationality model. In fact, by Eq. (10), it
is easy to observe that the frequencies of various strategies
and their average payoffs are disposed in the same orders.
For example, when the frequency of the defectors prevails,
their average payoff must be the highest. With this under-
standing, we can learn the payoff distribution of various
strategies via simply analyzing Fig. 2. In order to make a
clear comparison of the results of our model with that given
in Ref. [15], it would be helpful to plot the frequencies-r and
payoff-r diagrams with parameter set as N=6, K=1, and ¢
=1.25 (See Figs. 4 and 5).

One can easily observe in Fig. 5 that within a rather large
range, the average payoff of defectors is higher than that of
cooperators, and definitely when r is small, the payoff of
cooperators is even lower than that of loners. All this mani-
fests that as r is small, it is wise not to participate in the
game; by contrary, only as r is sufficiently large, participa-
tion in the game can bring up more payoff than loners, and
moreover, the defectors always gain more payoff than others.
The experimental results show that as r=3.6, the average
payoff of defectors is the highest (1.46+0.04 Eu.), and that
of cooperators is the second (1.32+0.09 Eu.) [15]. Our the-
oretical calculation predicts that the average payoff of defec-
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FIG. 5. (Color) Average payoffs of cooperators C (blue line),
defectors D (red line), and loners L (green line) as a function of r
for parameters N=6, K=1, and c=1.25.

tors is the highest (1.48 Eu.), and that of cooperators takes
the second place (1.28 Eu.). This result is comparatively con-
sistent with the experimental data. Besides, the prediction of
our theory on the frequencies of various strategies (x;
=29.0%, x,=30.4%, x,=40.6%) is also closer to the ex-
perimental measurements.

Our results indicate that in the future when one investi-
gates the human cooperation evolution, he must especially
concern the human bounded rationality behavior.

IV. SUMMARY

In this work, we introduce the degree of human rationality
in the anonymous public goods games (PGG) and then es-
tablish a new dynamical equation. In this model, people can
select to participate in the PGG as a cooperator or a defector,
or not to participate in the game as a loner. Our result shows
that the payoff of loners plays an extremely important role to
the equilibrium of the system. When the payoff of loners is
relatively low, people are tempted to participate in PGG;
whereas as the payoff of loners is comparatively high, people
select to escape from PGG. This leads to the consequence
that loners would be extinguished when the interest rate is
high. Besides, our work also indicates that (1) the potential
strategy still seriously affects the equilibrium of the system;
(2) no matter what state the system resides in at the initial
moment, our dynamical equation would drive the system to a
stable equilibrium in the rock-scissors-paper way.
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